2023 Spring Academic Webinar
Mork Family Department of Chemical Engineering & Materials Science
AGENDA

1 General Orientation Reminders
2 Student Support Services
3 Mork Family Department
4 Reminders and Resources
5 Q & A
BEFORE WE START...

• Please direct your attention to the short presentation.

• At the end of the presentation, you may ask questions via the Q&A window.

• The chat window is reserved for announcements. Please do not use the chat window for questions.
DEN General Orientation Reminders

• USC Welcome Packet pdf + DEN General Orientation Recording
  - https://viterbigrad.usc.edu/ms-denviterbi-new-student-information/
  - Both are mandatory, please review if you have not already

• USC Mandatory Online Trainings
  - Found in myUSC > Safety & Wellness, completion is required. Hold placed if not completed.

• Remember to Create DEN@Viterbi Profile Before Registration
  - viterbi.usc.edu/denprofile

• Limited Status Students
  - USC NetID and email will be created within 2 weeks of the start of the term or within 3 days after enrollment of you register after start of term.
  - General advisement for limited status students: den@vase.usc.edu

• After Registration, Technical Support and Training is available for DEN@Viterbi Students
  - https://viterbigrad.usc.edu/technical-support/training-options/
  - Much is covered in DEN general orientation, please review that first
Student Support Services at Viterbi

Academic Department Advising
Academic advising on course registration and planning for future semesters.

VASE DEN Student Services
General advisement and policies and procedures

DEN Technical Support Center
Technical support services for D2L, lecture posting, course notes support, and exams.

DEN Exams
Support and coordinate homework and exams on D2L.

*Part of the Technical support team
MFD – Student Affairs Team

Anthony Tritto
Director
Artritto@usc.edu

Brenda Ornelas
Assistant Director
bornelas@usc.edu

Candy Escobedo
Assistant Director
candyesc@usc.edu
MFD – Student Affairs

“What services can my MFD advisor help me with?”
MFD – Masters Programs

- Master of Science in Chemical Engineering
- Master of Science in Materials Engineering
- Master of Science in Materials Science
- Master of Science in Materials Engineering (Machine Learning)
- Master of Science in Petroleum Engineering
- Master of Science in Petroleum Engineering Digital Oilfield Technologies
- Master of Science in Petroleum Engineering Geoscience Technologies
- Master of Science in Petroleum Engineering/Engineering Management
MFD – Faculty Advisors

Dr. Noah Malmstadt
Chemical Engineering
Email: malmstad@usc.edu

Dr. Kenichi Nomura
Materials Science
Email: knomura@usc.edu

Dr. Iraj Ershaghi
Petroleum Engineering
Email: erhsaghi@usc.edu
Chemical Engineering

Requirements for Graduation 28 units total with 3.0 GPA overall
Deficiency courses may be required for students without a CHE background

Group I: Required Core Courses (All 4 required for 16 units total):
ChE 501 Modeling and Analysis of Chemical Engineering Systems – 4 units**
(This is required in your first semester**)
CHE 530 Thermodynamics for Chemical Engineers – 4 units
ChE 538 Transport Processes I – 4 units (Offered in the Fall)
ChE 542 Chemical Engineering Kinetics – 4 units (Offered in the Fall)

Group II: Elective Courses (Complete 12 units from the list below):
ChE 510 Energy and Process Efficiency – 3 Units
ChE 539 Transport Processes II – 4 units
ChE/PTE 531 Enhanced Oil recovery
ChE/PTE 582 Fluid Flow and Transport Processes in Porous Media
ChE 590 (Directed Research, 1 - 3 units, approval of research advisor required before registering)
Chemical Engineering

Undergraduate courses that could count towards the CHE Graduate Program

Requirements for Graduation 28 units total with 3.0 GPA overall
Deficiency courses may be required for students without a CHE background

Please note that Graduate Students Cannot Count More than 9 units of 400 Level Courses towards Their MS Degree

ChE 450 Sustainable Energy
ChE 475 Physical Properties of Polymers
ChE 487 Nanotechnology and Nanoscale Engineering through Chemical Processes
ChE 489 Biochemical Engineering
ChE 499 Chemical Process Safety

Or other 400-level or above courses in Math, Science & Engineering upon Department Approval*
Chemical Engineering

Non-CHE courses that can be applied as Electives*

Materials Science:
• MASC 515 Basics of Machine Learning for Materials
• MASC 551 Mechanical Behavior of Engineering Materials
• MASC 575 Basics of Atomistic Simulation of Materials
• MASC 583 Materials Selection
• MASC 576 Molecular Dynamics Simulations of Materials and Processes

Petroleum Engineering:
• PTE 519 Integrated Physical and Cyber Security for Oil & Gas Operations
• PTE 500 Computational Reservoir Modeling
• PTE 502 Advanced Reservoir Characterization
• PTE 507 Engineering and Economic Evaluation of Subsurface Reservoirs
• PTE 508 Numerical Simulation of Subsurface Flow and Transport Processes
Chemical Engineering Recommended Electives

Fall:
AME 522: Nonlinear Dynamical Systems, Vibrations, and Chaos  
AME 554: Additive Manufacturing Technology  
BME 559: Nanomedicine and Drug Delivery  
CE 523: Physicochemical Processes in Environmental Engineering  
ISE 562: Decision Analysis

Spring:
BME 559: Nanomedicine and Drug Delivery  
CE 553: Biological Processes in Environmental Engineering  
ISE 525: Design of Experiments
Materials Science

Requirements for Graduation 28 units total with 3.0 GPA overall:

**Core Courses:** (12 units)
- MASC 471 Applied Quantum Mechanics for Engineers (4)
- MASC 501 Solid State (4)
- MASC 503 Thermodynamics of Materials (4)
- MASC 504 Diffusion and Phase Equilibria (4)
- MASC 505 Crystals and Anisotropy (3)
- MASC 520 Mathematical Methods for Deep Learning (4)
- MASC 551 Mechanical Behavior of Engineering Materials (4)

**Electives:**
8-16 units from MASC elective list and 0-8 units from ENG elective list on the following page

Up to 8 units may be from 400-level courses on approval by department.
Materials Engineering

MASC elective list (20-28 units)

MASC 501 Solid State (3)
MASC 502 Advanced Solid State (3)
MASC 503 Thermodynamics of Materials (4)
MASC 504 Diffusion and Phase Equilibria (4)
MASC 505 Crystals and Anisotropy (4)
MASC 506 Semiconductor Physics (4)
MASC 512 Thin Film Science and Technology (4)
MASC 515 Basics of Machine Learning for Materials (4)
MASC 520 Mathematical Methods for Deep Learning (4)
MASC 534 Materials Characterization (3)
MASC 535L Transmission Electron Microscopy (4)
MASC 551 Mechanical Behavior of Engineering Materials (4)
MASC 559 Creep (3)
MASC 560 Fatigue and Fracture (3)
MASC 561 Dislocation Theory and Applications (3)
MASC 562 Failure Analysis (3)
MASC 564 Composite Processing (4)
MASC 570 Introduction to Photovoltaic Solar Energy Conversion (3)
MASC 575 Basics of Atomistic Simulation of Materials (3)
MASC 576 Molecular Dynamics Simulations of Materials and Processes (4)
MASC 583 Materials Selection (4)
MASC 599 Special Topics (varies)
MASC 601 Advanced Semiconductor Device Physics (4)
MASC 610 Molecular Beam Epitaxy

ENG elective list (0-8 units)

AME 503 Advanced Mechanical Design
AME 508 Machine Learning and Computational Physics
AME 509 Applied Elasticity
AME 525 Engineering Analysis
AME 526 Engineering Analytical Methods
AME 546 Design for Manufacturing and Assembly
AME 577 Survey of Energy and Power for a Sustainable Future
AME 578 Modern Alternative Energy Conversion Devices
AME 588 Materials Selection
ASTE 557 Spacecraft Structural Strength and Materials
BME 510 Cellular Systems Engineering
CE 307 Mechanics of Solids I
CE 329 Finite Element Analysis
CE 546 Structural Mechanics of Composite Materials
CHE 501 Modeling and Analysis of Chemical Engineering Systems
CHE 630 Fundamentals of Electrochemical Energy System
CHEM 632 Introduction to Surface Chemistry and Electrochemicals
EE 471 (MASC 471) Applied Quantum Mechanics for Engineers (4)
EE 504L Solid State Processing and Integrated Circuit Laboratory
EE 507 (MASC 507) Micro- and Nano- Fabrication Technology
EE 508 (MASC 508) Nano- Fabrication Lithography
EE 512 Stochastic Processes
EE 529 Optics
EE 531 Non-Linear Optics
EE 537 Modern Solid-State Devices
EE 601 Semiconductor Devices
EE 607 Microelectromechanical Systems
EE 612 Science and Practice of Nanotechnology
ENE 505 Energy and the Environment
ISE 510 Advances Computational Design and Manufacturing
ISE 515 Engineering Project Management
PTE 586 Artificial Intelligence and Machine Learning in Oilfield Operations (3)
Materials Engineering Machine Learning

MASC core requirements (12 units)

MASC 515 Basics of Machine Learning for materials (4)
MASC 520 Mathematical Methods for Deep Learning (4)
MASC 575 Basics of Atomistic Simulation of Materials (4)

MASC elective courses (8-16 units)

MASC 501 Solid State (3)
MASC 502 Advanced Solid State (3)
MASC 503 Thermodynamics of Materials (4)
MASC 504 Diffusion and Phase Equilibria (4)
MASC 505 Crystals and Anisotropy (4)
MASC 506 Semiconductor Physics (4)
MASC 512 Thin Film Science and Technology (4)
MASC 534 Materials Characterization (3)
MASC 535L Transmission Electron Microscopy (4)
MASC 551 Mechanical Behavior of Engineering Materials (4)
MASC 559 Creep (3)
MASC 560 Fatigue and Fracture (3)
MASC 561 Dislocation Theory and Applications (3)
MASC 562 Failure Analysis (3)
MASC 564 Composite Processing (4)
MASC 570 Introduction to Photovoltaic Solar Energy Conversion (3)
MASC 576 Molecular Dynamics Simulations of Materials and Processes (4)
MASC 583 Materials Selection (4)
MASC 599 Special Topics (varies)
MASC 601 Advanced Semiconductor Device Physics (4)
MASC 610 Molecular Beam Epitaxy (3)
PTE 586 Artificial Intelligence and Machine Learning in Oilfield Operations (3)

Additional Engineering electives listed on next page
ENGR elective courses (0-8 units)

AME 503 Advanced Mechanical Design (3)
AME 509 Applied Elasticity (4)
AME 525 Engineering Analysis (4)
AME 526 Introduction to Mathematical Methods in Engineering II (4)
AME 546 Design for Manufacturing Assembly (4)
AME 577 Survey for Energy and Power for a Sustainable Future (4)
AME 578 Modern Alternative Energy Conversion Devices (3)
ASTE 557 Spacecraft Structural Strength and Materials (3)
BME 510 Cellular Systems Engineering (4)
CE 507 Mechanics of Solids (4)
CE 546 Structural Mechanics of Composite Materials (2)
CHE 501 Modeling and Analysis of Chemical Engineering Systems (4)
CHEM 630 Fundamentals of Electrochemical Energy Systems (2)
CHEM 632 Introduction to Surface Chemistry and Electro catalysts (2)
EE 471 Applied Quantum Mechanics for Engineers (4)
EE 504L Solid-State Processing and Integrated Circuits Laboratory (4)
EE 507 Micro- and Nano-Fabrication Technology (4)
    EE 512 Stochastic Processes (3)
    EE 529 Optics (4)
    EE 531 Nonlinear Optics (4)
    EE 537 Modern Solid-State Devices (4)
EE 601 Advanced Semiconductor Device Physics (4)
EE 607 Microelectromechanical Systems (4)
EE 612 Science and Practice of Nanotechnology (3)
ENE 505 Energy and the Environment (4)
ISE 510 Advanced Computational Design and Manufacturing (3)
ISE 515 Engineering Project Management (3)
Master of Science in Petroleum (POST Code 654)  
Course Check List – Fall 2021

Course Breakdown:

**Group I: Required Core Courses**  
(All 6 required for 19 units total):

- PTE 507 Engineering and Economic Evaluation of Subsurface Reservoirs – 3 units
- PTE 508 Numerical Simulation of Subsurface Flow and Transport Processes – 3 units
- PTE 517 Testing of Wells and Aquifers – 3 units
- PTE 531 Enhanced Oil Recovery – 4 units
- PTE 555 Well Completion, Stimulation, and Damage Control – 3 units
- PTE 582 Fluid Flow and Transport Processes in Porous Media – 3 units

**Group II: Elective Courses**  
(Complete 3 courses (9-10) units total from the list below):

- PTE 502 Advanced Reservoir Characterization – 3 units
- PTE 503 Technology of Unconventional Oil and Gas Resources Development – 3 units
- PTE 504 Geophysics for Petroleum Engineers – 3 units
- PTE 505 Inverse Modeling for Dynamics Data Integration – 3 units
- PTE 506 Geothermal Reservoirs – 3 units
- PTE 511 Advanced Phase Behavior of Petroleum Reservoir Fluids – 3 units
- PTE 512 Gas Injection Processes — Analytical Solutions and Analysis – 3 units
- PTE 514 Drilling Engineering – 3 units
- PTE 519 Integrated Physical and Cyber Security for Oil and Gas Operations – 3 units
- PTE 542 Carbonate Rocks – 3 units
- PTE 545 Corrosion Control in Petroleum Production – 3 units
- PTE 572 Applied Geostatistical Modeling for Subsurface Characterization – 4 units
- PTE 515 Natural Gas Engineering – 3 units
- PTE 578 Advanced Production Engineering – 3 units
- PTE 581 Environmental Technology in the Petroleum Industry – 3 units
- PTE 586 Artificial Intelligence and Machine Learning in Oilfield Operations - 4 units
- PTE 587 Smart Completions, Oilfield Sensors and Sensor Technology – 3 units
- PTE 588 Smart Oilfield Data Mining – 3 units
- PTE 589 Advanced Oilfield Operation with Remote Immersive Visualization and Control – 3 units
- PTE 590 Directed Research – 1-12 units

**Deficiency Courses for non-majors**

- PTE 411x Introduction to Transport Processes in Porous Media – 3 units
- PTE 412x Petroleum Reservoir Engineering – 3 units
- PTE 461 Formation Data Sensing with Well Logs – 4 units
- PTE 466 Petroleum Geology – 3 units or PTE 502 Advanced Reservoir Characterization (3)
- PTE 500 Computational Reservoir Modeling – 3 units

**Graduation requirements:**

- 28-29 units total
- 3.0 GPA overall
- Up to 16 additional units min. of deficiency courses are required for students without a B.S. in Petroleum Engineering
Master of Science in Petroleum Digital Oilfield Technologies (POST Code 1811)
Course Check List – Fall 2021

Course Breakdown:

Group I: Required Core Courses (19 units):

- PTE 507 Engineering and Economic Evaluation of Subsurface Reservoirs
- PTE 508 Numerical Simulation of Subsurface Flow and Transport Processes
- PTE 517 Testing of Wells and Aquifers
- PTE 531 Enhanced Oil Recovery
- PTE 555 Well Completion, Stimulation, and Damage Control
- PTE 582 Fluid Flow and Transport Processes in Porous Media

Specialization Course
Take PTE 586 and PTE 588
PTE 586 Intelligent and Collaborative Oilfield Systems Characterization and Management
PTE PT 588 Smart Oilfield Data Mining

and two of the other following courses
- PTE 519 Integrated Physical and Cyber Security for Oil and Gas Operations
- PTE 587 Smart Completions, Oilfield Sensors and Sensor Technology
- PTE 589 Advanced Oilfield Operations with Remote Immersive Visualization and Control
- PTE 521* Digital Transformation of Petroleum Industry

*New course proposed

Group II: Elective Courses
(Complete 2 courses total from the list below):

- PTE 502 Advanced Reservoir Characterization – 3 units
- PTE 503 Technology of Unconventional Oil and Gas Resources Development – 3 units
- PTE 504 Geophysics for Petroleum Engineers – 3 units
- PTE 505 Inverse Modeling for Dynamics Data Integration – 3 units
- PTE 506 Geothermal Reservoirs – 3 units
- PTE 511 Advanced Phase Behavior of Petroleum Reservoir Fluids – 3 units
- PTE 512 Gas Injection Processes — Analytical Solutions and Analysis – 3 units
- PTE 514 Drilling Engineering – 3 units
- PTE 515 Natural Gas Engineering – 3 units
- PTE 519 Integrated Physical and Cyber Security for Oil and Gas Operations – 3 units
- PTE 542 Carbonate Rocks – 3 units
- PTE 545 Corrosion Control in Petroleum Production – 3 units
- PTE 572 Applied Geostatistical Modeling for Subsurface Characterization – 4 units
- PTE 578 Advanced Production Engineering – 3 units
- PTE 581 Environmental Technology in the Petroleum Industry – 3 units
- PTE 586 Artificial Intelligence and Machine Learning in Oilfield Operations – 4 units
- PTE 587 Smart Completions, Oilfield Sensors and Sensor Technology – 3 units
- PTE 588 Smart Oilfield Data Mining – 3 units
- PTE 589 Advanced Oilfield Operation with Remote Immersive Visualization and Control – 3 units
- PTE 590 Directed Research – 1-12 units

Deficiency Courses for non majors

- PTE 411x Introduction to Transport Processes in Porous Media – 3 units
- PTE 412x Petroleum Reservoir Engineering – 3 units
- PTE 461 Formation Data Sensing with Well Logs – 4 units
- PTE 466 Petroleum Geology – 3 units
- PTE 500 Computational Reservoir Modeling – 3 units

Graduation Requirements:

37-38 units total
3.0 GPA overall

Up to 16 additional units min. of deficiency courses may be required for students without a B.S. in Petroleum Engineering
Master of Science in Petroleum Engineering/Engineering Management (POST Code 1652)
Course Check List – Fall 2021

Course Breakdown:

Group I: Required Core Courses (36 units):
- ISE 500 Engineering Management Decisions and Statistics
- ISE 514 Advanced Production Planning and Scheduling
- ISE 515 Engineering Project Management
- ISE 544 Management of Engineering Teams
- ISE 561 Economic Analysis of Engineering Projects
- 1 Pre-approved Business Management Course (3 units)
- PTE 507 Engineering and Economic Evaluation of Subsurface Reservoirs
- PTE 508 Numerical Simulation of Subsurface Flow and Transport Processes
- PTE 517 Testing of Wells and Aquifers
- PTE 531 Enhanced Oil Recovery
- PTE 555 Well Completion, Stimulation, and Damage Control
- PTE 582 Fluid Flow and Transport Processes in Porous Media

Group II: Elective Courses (Complete 9 units total of PTE electives)

Deficiency Courses
- PTE 411x Introduction to Transport Processes in Porous Media – 3 units
- PTE 412x Petroleum Reservoir Engineering – 3 units
- PTE 461x Formation Data Sensing with Well Logs – 4 units
- PTE 466 Petroleum Geology – 3 units or PTE 502 Advanced Reservoir Characterization (3 units)
- PTE 500 Computational Reservoir Modeling – 3 units

Graduation Requirements:
- 45 units total
- 3.0 GPA overall
- Up to 16 additional units min. of deficiency courses may be required for students without a B.S. in Petroleum Engineering
MFD – Petroleum Geoscience Technologies

Course Breakdown:

Group I: Required Core Courses (19 units):

- PTE 507 Engineering and Economic Evaluation of Subsurface Reservoirs
- PTE 508 Numerical Simulation of Subsurface Flow and Transport Processes
- PTE 517 Testing of Wells and Aquifers
- PTE 531 Enhanced Oil Recovery
- PTE 555 Well Completion, Stimulation, and Damage Control
- PTE 582 Fluid Flow and Transport Processes in Porous Media

Group II- Specialization Courses

- Take PTE 502 and PTE 503
- PTE 502 Advanced Reservoir Characterization (3)
- PTE 503 Technology of Unconventional Oil and Gas Resources Development (3)

and two of the following courses:

- PTE 504 Geophysics for Petroleum Engineers (3)
- PTE 505 Inverse Modeling for Dynamics Data Integration (4)
- PTE 572 Applied Geostatistical Modeling for Subsurface Characterization – 4 units
- PTE 592 Computational Geomechanics (4)

Deficiency Courses for non-majors

- PTE 411x Introduction to Transport Processes in Porous Media – 3 units
- PTE 412x Petroleum Reservoir Engineering – 3 units
- PTE 461 Formation Data Sensing with Well Logs – 4 units
- PTE 466 Petroleum Geology – 3 units
- PTE 500 Computational Reservoir Modeling – 3 units

Graduation requirements:

- 38-39 units total
- 3.0 GPA overall
- Up to 16 additional units min. of deficiency courses may be required for students without a B.S. in Petroleum Engineering
MFD – DEN classes available

MASC: https://classes.usc.edu/term-20231/classes/masc
PTE: https://classes.usc.edu/term-20231/classes/pte
CHE: https://classes.usc.edu/term-20231/classes/che

Chemical Engineering: CHE 530

Materials Science: MASC 504, MASC 520, MASC 583

Petroleum Engineering: PTE 412, PTE 508, PTE 515, PTE 517, PTE 531, PTE 578
D2L Login and Training

USC Viterbi School of Engineering – DEN@Viterbi

Log in to view your courses offered through DEN@Viterbi, explore tools and features, and customize your eLearning experience for programs and courses supported by DEN@Viterbi. Students must be registered and approved to view select courses.

First Time Logging in?
DEN@Viterbi Students: You must create a profile first before you can log in.
On-campus students: Profile is created automatically.
If you have problems logging on or seeing your courses, please contact DEN@Viterbi Technical Support Center office at dentsc@usc.edu or 213-740-9356.

Log in Options

- USC NetID: Active users with a @usc.edu address can use their USC NetID login option. If this does not work, you may still use your original D2L credentials described below

USC NetID Login

- D2L email account and password: Log on by D2L email account and password option below. Your D2L username is your FULL EMAIL ADDRESS.
DEN D-Clearance Request

1. Login to DEN Desire2Learn: [http://courses.uscdden.net](http://courses.uscdden.net)
2. Go to DEN@Viterbi Tools on the navigation bar
3. Select “Request D-clearance” link, select the term, and select a course

Important reminders:
- Approval process takes 1-2 business days. To view the status of a request, click on “Check D-Clearance Status”
- You can register once your request has been processed. D-clearances expire 7 days from when it is issued so register as soon as you obtain it to secure a seat in a course.

All DEN courses require D-clearance.
For questions on D-Clearance status, contact [den@vase.usc.edu](mailto:den@vase.usc.edu)
MFD Advising

• Email: mfdinfo@usc.edu
*Please include USC ID number in emails
• Website: http://www.chems.usc.edu
• Instagram: http://www.instagram.com/mfdusc
• Twitter: http://www.twitter.com/uscmork

VASE Advising

Email: welcome@vase.usc.edu
Website: https://viterbigrad.usc.edu/
Virtual Walk-in Hours (Monday-Thursday, PST):
• 10:00 AM - 12:00 PM
# DEN CONTACT INFORMATION

**Location:** Olin Hall of Engineering (OHE), Rm. 106  
**Hours:** Mon. - Fri. 8:30 am - 5 pm (Pacific Time)  
[https://viterbigrad.usc.edu/academic-services/denviterbi-student-services/](https://viterbigrad.usc.edu/academic-services/denviterbi-student-services/)

<table>
<thead>
<tr>
<th>DEN@Viterbi Support</th>
<th>Contact Information</th>
<th>Staff</th>
</tr>
</thead>
</table>
| Technical support, Desire2Learn training, Homework | [dentsc@usc.edu](mailto:dentsc@usc.edu)  
213-740-9356 | Daniel Cueva |
| DEN d-clearance inquiries | [den@vase.usc.edu](mailto:den@vase.usc.edu) |  |
| Exams | [denexam@usc.edu](mailto:denexam@usc.edu)  
213-740-9356 | Shirley Schutt |
| VASE Advisor  
• General advisement  
• Policies & Procedures | [den@vase.usc.edu](mailto:den@vase.usc.edu) | Andrea Mora, Andy Chen, William Wences |
Please help us by submitting the survey after you leave the meeting.

THANK YOU!